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LElTER TO THE EDITOR 

The vicious neighbour problem 

R Tao and F Y W u t  
Department of Physics, Northeastern University, Boston, MA 021 15, USA 

Received 18 November 1986 

Abstract. We compute the probability that a person will survive a shootout. The shootout 
involves N persons randomly placed in a d-dimensional space, each firing a single shot 
and killing his nearest neighbour with a probability p .  We present a formulation which 
gives PN( p ) ,  the probability that a given person will survive, as a polynomial o f p  containing 
a finite number of terms. The coefficients appearing in the polynomial are explicitly 
evaluated for d = 1 and d = 2 in the limit of N + to yield exact expressions for Pm( p ) .  
In particular, P,(1) gives the probability that a given particle is nor the nearest neighbour 
of any other particle in a classical ideal gas, and we further determine Pm( 1) for d = 3,4 
and 5 using Monte Carlo simulations. 

Consider N persons placed randomly in a bounded d-dimensional space. At a given 
instance, each person shoots, and kills, his nearest neighbour (called vicious neigh- 
bours) with a probability p. What is the fraction of persons who will survive the 
shootout in the limit of N + 00 and neglecting boundary corrections? 

This problem of vicious neighbours, first posed by Abilock (1967) for p = 1, has 
remained unsolved for almost two decades. The d = 2 version of the p = 1 problem 
re-appeared recently as a puzzle for which a prize was posted (Morris 1986, 1987). In 
this letter we present a solution to the general p problem for any spatial dimension 
d. More precisely, we present a formulation which gives P N (  p), the fraction of persons 
who will survive the shootout, as a finite polynomial in p .  We further show that 
coefficients of the polynomial are given in terms of finite-dimensional integrals in the 
limit of N + 00. For d = 1,2 these integrals are relatively simple and are explicitly 
evaluated to yield exact expressions for P, (p ) .  For three and higher dimensions we 
compute Pa( 1) using independent Monte Carlo simulations. 

We first summarise our findings for p = 1, the problem originally proposed by 
Abilock (1967), 

Pa( 1) = for d = 1 

= 0.284 051 . . . for d = 2 

= 0.303 . . . 
= 0.318.. . 
= 0.328 . . . 

for d = 3 (Monte Carlo result) 

for d = 4 (Monte Carlo result) 

for d = 5 (Monte Carlo result). 

(1) 

Explicit expressions for Pa( p )  for d = 1 and d = 2 are given by (14) and (39). 

t Work supported in part by NSF Grant DMR-8219254. 
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It is convenient to regard the N persons as being particles in a many-body system. 
Then PN( p) is the probability that a given particle will survive the shootout, averaged 
over all particle configurations. As an example of possible application, P,(1) now 
gives the probability that a given particle is not the nearest neighbour of any other 
particle in a classical ideal gas. Our goal is to compute the thermodynamic limit 

Number the particles from 0 to N-1 and consider the survival of particle 0. Each 
particle (other than 0) can be in one of two 'states': that it either kills, or does not 
kill, particle 0. Regard the occurrence of these two states as a probabilistic event and 
denote the probability that n particles, numbered jl , j2, . . . j,, all 'shoot (and kill) 
particle 0, regardless of the states of the other N - n - 1 particles, by 

(3) p O ' , , j 2 , .  . . , j , )=p"w(j l , j2 , .  . . ,in) n = 1 ,2 , .  . . , N - 1 

where w(j i ,  j,, . . . , j,) is the probability that the n particles j,, j,, . . . , j,, will find 0 as 
their common nearest neighbour. Then as a consequence of an identity in probability 
theory (Whitney 1932) we can express PN(p),  the probability that all N - 1 particles 
are in one state (of not killing 0), as a linear combination of p(j l ,  j,, . . .j,,), the 
probability that the n particles j,, j,, . . . , j ,  are in the other state (all killing 0), as 
follows: 

P N ( p ) = l -  C p ( A +  C p ( j l , j J +  . . .  
N-1 

j = 1  1 G j ,  c j 2 G  N -  1 

+ c ( - l ) f lp(j l , .  . . ,jfl)+ . . . 
+(-1)N-'p(1,2 ,..., N-1). 

l s j , c . .  . cj , ,GN-l  

(4) 

Since all particles 1, 2, . . . , N - 1 are equivalent in the consideration of the survival 
of particle 0, we can write (4) as 

where 

C,,=("n') w(1,2 , . . . ,  n ) .  

The intriguing fact which allows the problem to be exactly soluble is that 

(7 )  
where n d  is a finite integer whose value depends on the spatial dimension d. That is, 
no more than nd particles can simultaneously find particle 0 as their common nearest 
neighbour. It is easy to see this for d = 1 since, for particles arranged on a line, there 
can be at most two particles having particle 0 as their nearest neighbours. Thus, we 
have n ,  = 2. In the case of d = 2 we assume there exist n particles, numbered 1,2,  . . . , n, 
all having particle 0 as their nearest neighbours (cf figure 1 ) .  For particles 1 and 2 
to have particle 0 as their nearest neighbour, we must have r I 2 >  rol and r,,,, where rli 
is the distance between particles i and j, and, consequently, el > ~ / 3 ,  where is the 
angle between rl and r,. Similarly we find Oi > ~ 1 3 ,  i = 2, 3, . . . , m, for the other n - 1 
angles. The sum rule Xl",l 0, = 27r now implies that n 4 5 and hence n, = 5 .  

Generally, the integer nd for d 2 2  is bounded by the maximum number of d- 
dimensional regular ( d  + 1)-polyhedra that can be fitted together such that they all 

w(1,2, .  . . , n )  = o  for n > n d  
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2 

n 

Figure 1. Configuration showing that n particles have particle 0 as their common nearest 
neighbour. 

have the origin as a common vertex and there is still room for the polyhedra to rotate 
slightly about the origin without spoiling the fit. In three dimensions one can fit at 
most 22 regular tetrahedra at the origin without exhausting the whole solid angle 477 
(Coxeter 1969). It follows that n3 cannot be greater than 22. 

Up to this point we have regarded N finite and have not considered the fact that 
the region confining the N particles is bounded. Let il be the volume of the region. 
We shall take the thermodynamic limit N + CO, il+ CO with the density p = N / i l  held 
constant, a limit we denote by N+CO for brevity. While there is no intrinsic length 
in the problem, so that the final result is expected to be independent of p, the 
introduction of the density p is a convenient tool which enables us to take the limit 
appropriately. 

It is relatively easy to see that 
lim C ,  = ( N  - I ) w (  1) = 1 for all d. 
N -0c 

This is so since w( l ) ,  the probability that ro, is the shortest among the N - 1 distances 
r r l ,  i = 0,2,3,  . . . , N - 1, is 1 / (  N - 1 )  after the boundary corrections are ignored. 

Consider next the evaluation of Cz = ( N ; ' ) ~ (  1 ,2 ) ,  where w (  1 , 2 )  is the probability 
that both particles 1 and 2 have particle 0 as their nearest neighbours. For this to 
happen we must have r l  , rl < r ,?  and, in addition, r l  < r , ,  , r ,  < r , ? ,  for i = 3,4, . . . , N - 1 .  
Let S 2 ( r , ,  r ? ,  0) be the volume common to 0 and the union of two spheres centred 
at rz and r3 with respective radii r2 and r 3  (thus both passing through the origin). 
Then, since N -3  particles must stay outside S 2 ,  we have 

C 2 = -  1 -  Sz( r ,  , r , ,  0)) ' ' 
2 !  R 

Taking the thermodynamic limit now leads to 

dr ,  dr, exp[ -pi/.( r ,  , r , ) ]  

dr ,  dr2 exp[- V,( r ,  , r 2 ) ]  

V - X  

(9) 

(10) 
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where V2( r ,  , r2 )  is the volume occupied by the two aforementioned spheres, a situation 
shown in figure 2 for d =2. 

Proceeding in the same fashion we obtain, quite generally, 

c, = lim C, = - dr, . . . dr, exp[ - V, ( rl , , . . , r, )] (11) 

where V,(r,, . . . , r , )  is the volume occupied by n spheres centred at rl, . . . , r, and 
intersecting at the origin. Here, the restrictions ri < ru, i # j = 1,2, . . . , n ensure that 
particle 0 is the common nearest neighbour of particles i = 1,2, .  . . , n. Finally, the 
survival probability Pm(p) is obtained by combining (2) and ( 5 )  as 

N +CO n! 'I r , < r t ,  

Pm( p)  = 1 -p -t c2p2- c3p3 + . . . + c,, (-p)"d (12) 
where c, is given by (11). 

In one dimension we have n, = 2 and hence, from (10) and (12), 

dx, dX2 exP[- V2(X, 7 x2)l (13) I Pm(p) = 1 -p+ ip2  
XIIX2<X12 

where xI2 = Ix, -xzI and the two integrations range from -CO to CO. Now the restriction 
x,, x2< xI2 implies that x, and x2 must have opposite signs and, therefore, V2(x1, x2) = 
2(lx,l+ Ix21). The integrations in (13) are thus simply carried out, yielding 

0 

P,(p)= 1 - p + 2 x j p 2  I_, exp(-2lx,l) dx, [omexp(-2/x,l)dx2= l -p+ ip*  (14) 

which, for p = 1, reduces to a, the result quoted in (1). 
We now evaluate (12) in two dimensions, where n2 = 5, term by term by explicitly 

reducing the coefficients ci into quadratures. 
The integrand in (1 1) is invariant under permutations of the n vectors r ,  , r 2 ,  . . . , r,. 

This permits us to focus on a particular arrangement of the vectors, such as the one 
shown in figure 1, which occurs ( n  - l ) !  times. The key to the reduction of (11) lies 
in the observation that, for ri fixed, the constraints r,, ri+, < r,,,+, effectively restrict 
t i + ,  3 Q+,/ r, to range from fmin( e,) to fmax( e,), where 0, is the angle between the vectors 
ri and r i + , ,  and with 

It is therefore important to treat the cases of 8, < ;T and 0, > +T separately. 

Figure 2. Configuration showing the area occupied by two circles. 



Letter to the Editor L303 

Consider first the integrations in ( 1 1 )  over the directions of r , ,  r 2 , .  . . , r,,. We 
decompose the phase space of these angular integrations into regions according to 
whether each of the n angles Bi is greater or less than f ~ .  This decomposition is 
facilitated by assigning a two-valued variable ri to the angle Bi such that ai = O  if 
ei >+T and ai = 1 if Bi <in. Let Z ( U , ,  u2, . . . , U,) be the contribution to c,, with 
{ e , , .  . . ,e,} in the range specified by U , ,  v2,. . . ,U , , .  Clearly, 1 is invariant under 
cyclic permutations of its arguments, i.e. Z(u1,. . . , (T,) = 1(u2, .  . . , U,,, U , ) ,  etc. After 
taking this degeneracy into consideration, we find 

c2 = I (  0,O) + 21 ( 1,O) 

~3 = Z(0, 0,O) + 3 I (  1, 0,O) + 3 I (  1,  1 , O )  
(16) 

c4=41(1,0,0,0)+41(1,  1,0,0)+21(1,0,1,0)+4Z(1,1, 1,0) 

~ , = 5 1 ( 1 ,  1,  1 ,  l ,O)+Z(l,  1, 1 ,  1 ,  1 )  

where we have used the fact that each Oi must range between f~ and &r and thus, 
e.g., there can be only two ways to fit five angles in the case of n = 5 .  

Consider next the n radial integrations over dr,  , . . . , dr,. Using the fact that the 
volume V,,(r,,. . . , r,,) is homogeneous and quadratic in r , ,  . . . , r,, we can write for 
each term in (16) 

Vn=r:Vn(t2,t3,...,fn; e l , e 2 , . . . , e n - , )  (17) 

where ti ri/ Ti-, .  Thus, after introducing the variables t i ,  i = 2, . . . , n, into the 
integrand, the integration over rl can be carried out, yielding a factor 

277 jOm r?-' dr,  exp[-r:V,,(t2, t 3 , .  . . , t , ;  e,, 0 2 , .  . . , @,,-,)] = ~ ( n  - l ) ! (V, , -" .  

Thus we find, for c2,  

(18) 

Z ( 0 , O )  = T 1:; de, jOm t2 df2[ V2( t2 ;  e , ) ] - 2  = 0.258 572 168 . . . 

I (  1 , O )  = T 

where 

( 2  COS e, ) - '  

2 cos 0 ,  
del  1 t2 dt2[ V2(t2; = 0.028 880 652 . . . 

v2( t2; e,) = Z, + t:z2 

and 

z ,  = T -  a, +f sin (2a,)  

z2 = T - p2 +f sin(2p2) 

cy, and p2 being the angles shown in figure 2 and given by, with i = 1 ,  

sin ai = t i+ ,  sin ei(i  + t;+, -2ti+, cos ei)-1'2 
sin p i + ,  =sin ei(i  + t?+, -2ti+, cos e p 2 .  

Substitution of (19) and (20) into (16) now gives 

c2=0.316 3335..  . . 
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In a similar fashion we find, for c3, 
3 ~ l 2 - 8 ~  m 

I (o ,O ,  0) =% f de, [ de2 f “ r: dt2 [ t3 dt3[ V3]-3 = 0.01 1 207 724. . . (25) 

3n/2-e,  ( 2  COS e,)-‘ 

I (  1, 0,o) = 5 */’ de ,  5 de2 1 t :  dr2 jom t3 dr,[ V3]-3 
3 a / 3  7r/2 2 COS e, 

= 0.005 621 972. . . (26) 
r / 2  ( 2  COS e,)-, (2 COS e2)- I 

t :  dt2 13 df3[ V3lp3 
2- lrl2 

‘ ( 1 9  1 9  0) =3 5,/3 del J , / 3  ‘02 J 2  cos el 2 COS e2 

= 0.001 168 842 . . . (27) 

where, quite generally, 
( n  = 3,4,5)  (28) 2 v,=z,+t:z2+ . . .+(  r2  ... r,) z, 

zi = ?r -a i  +f sin 2ai - p i - ,  +f sin 2pi- ,  ( i = 1 , 2  ,..., n ) .  (29) 

Here the angles ai and pi, shown in figure 1, are related to the integration variables 
through (23), with 0, = 21r - 0,  - O2 - . . . - e,-,, and subject to the constraints Po= 0,. 
Special care must be taken for n = 3, a situation shown in figure 3, for which we must 
set a 2 = p 2 = 0  if e,> 7~ and Cy3=p3=0 if 8,+82<?r. 

Substitution of (25)-(27) into (16) now gives 

c3 = 0.032 9390 . . . . (30) 
Similarly, for c4 we find 

3r/2-e ,  -e2 3?r =I2 
I (  1,0,0,0) = 7 I,,, de,  jzr” de2 IT/, d 03 

(2  cos e,)-]  

t :  dr2 lom r: dt, lom t4 dt4[ VJ4 

Figure 3. Configuration showing the area occupied by three circles intersecting at one 
point with O1 + e2 > T and f12 < T. 
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37T j n / 2  del j n / 2  

( 2  COS e2 ) r1  

j 3 n / 2 - e l - 8 2  de3 j ( 2 ~ 0 s e , ) - I  

t :  dt2 
n/2 2 COS el  

1(1,1,0,0)=- d 62 
2 n/3 n/3 

7 ~ / 6 - e ,  min{3rr/2-8,-e2,n/2) 

Z(l,O, 1,O) [=I2 del  1 de2 [ d 63 
2 n / 3  W / 2  n/3 

(2 COS e,)-’ ( 2  COS eJ1 

Numerical evaluation of (31)-(34) yields 

c4 = 0,000 6575 . . 
In the evaluation of c5 we have 

24.rr J n’2 del J r’2 J n’2 [ 3 n/ 2- el - e2 - e, 

Z(1,1, 1,1,0) =- dB2 d83 d 64 
5 w / 3  n/3 a /3  min{n/3.3n/2-8,-e2-e3) 

( 2 ~ 0 s  e,)-! ( 2  COS e2)ri  (2 COS e3)-I 
t i  dt, t:dr3 I r:dt4 

2 COS e2 2 COS e3 
( 2  COS e 4 ) r 1  

2 COS e4 
X I t 5  dts[ VsI-’ 

(33) 

(34) 

(35) 

Z(1, 1, 1, 1, 1) =- 23.rr[:32dOl I;32d82 [rr’2d03 
n / 3  

m i n { a / 2 , 5 ~ / 3 - 8 ,  -e2-e3) dB4  COS e,)-’ 

( 2  COS e2)-I 

t: dt2 
~ / 3 , 3 u / Z - e ~  - e2 -e3 ) ,5~ /3 -e l  -e2-e,} 

( 2  COS e3)-I 

2 COS e, 

2 COS el  
min((2 cos e4)r1,(2 cos e,)-I} 

max(2 cos e4.2 cos e,] 
t5  dt5[ VJ5. 

(37) 
I t i  d t ,  J t :  dt3 J2 cos 82 

Numerical evaluation of (36) and (37) gives 

(38) cg  = 0.000 0010. . . . 
Finally, upon combining (12), (24), (30), (35) and (38), we obtain 

P,( p )  = 1 - p + 0.3 16 3335p2 - 0.032 9390p3 + 0.000 6575p4 - 0.000 OOlOp’ (39) 

which, for p = 1, reduces to 0.284 051 . . . , the result quoted in (1). 
The evaluation of Pm( p)  given by (12) can, in principle, be carried for any d. For 

d = 3, for example, we replace circles by spheres in the above consideration and it is 
necessary to evaluate 21 terms at most in (12), each of which is a multidimensional 
integral. However, these integrals are fairly complicated and, instead, we have used 
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independent Monte Carlo simulations to obtain estimates of Pa( 1). Simulations on a 
VAX computer for systems consisting of up to 10 000 particles yield the results in (1). 
To check the accuracy of our simulations, we applied the same procedure to the d = 2 
system and obtained the number Pm( 1) = 0.284 f 0.003, in excellent agreement with the 
exact result (39). 

Note added. After the submission of this letter, Veit Elser and Friend Kierstead Jr  have called our attention 
to the known fact that n, = 12. Dr Elser also provided upper bounds on nd for d up to 24. 
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